0 items
Asset Type
The plant has a production capacity of 35 000 tons Phthalic Anhydride (PA) per year on a continuous seven days per week basis.
Raw material orthoxylene (o-Xylene, 1,2-dimethylbenzene) is mainly imported by ship to the tank storage at the jetty. Orthoxylene is pumped by pipeline to the site. The reaction is strongly exothermic and the reaction heat is recovered generating steam in an integrated WHB (Waste Heat Boiler). The tail gases from the processes are incinerated in a catalytic incinerator (Catox) where complete combustion takes place leaving only effluent CO2 and water.
The exothermic reaction develops substantial amounts of excess heat. Surplus heat is cooled off with a liquidized salt mix made up by potassium nitrate and sodium nitrate, which in turn is cooled with water and hence no thermal oils is present in the WHB. Reaction occurs in potentially explosive areas in all process steps.
The plant handles hydrocarbons at elevated temperatures and pressures and has the potential for pool fires, explosion and gas jet fires. There is however not sufficient quantity of light hydrocarbons to give rise to the inherent potential for a vapor cloud explosions. There is generally a good standard of remote isolation valves provided in the raw material supply as well as in process units.
Formaldehyde Plant (Reichhold Design using metal oxide catalyst).
Available for operation in-place (Allentown, PA USA) or relocation globally.
Process Description:
The Formaldehyde plant (P501) is designed to produce formaldehyde by the catalytic conversion of methanol and oxygen controlled recycle gas. Formaldehyde is produced by the direct oxidation of methanol from the Methanol Storage Tank and Piping (P502). Emissions from the methanol storage tank and piping, during truck unloading, are captured by the Methanol Vapor Recovery System (C502). Emissions not captured by the vapor recovery system are fugitive emissions (Z550). The catalytic conversion reaction is carried out with the aid of a catalyst, which consists of molybdenum and iron oxides. The process gas is passed through the catalyst, contained in a multiple tube unit called the converter. It both heats the air-methanol mixture to the reaction temperature in the upper part of the catalyst tube and removes the heat of the reaction in the lower part. The formalin gases, which leave the converter, are cooled in an after-cooler where low-pressure steam is produced. The cooled gases enter an absorber where the formaldehyde is absorbed into water to produce up to a 53.0% Formaldehyde solution. In order to reach desired production rates, it is necessary to operate the plant under recycle conditions. Part of the gas mixture leaving the absorber stack is returned to a recycle tank where it is mixed with fresh air, at a controlled rate, to maintain oxygen content of 10 — 10.5% by volume. The remaining unused gas mixture goes to the Natural Gas fired (FML541) Catalytic Oxidizer (C501) where it is preheated and oxidized, in the presence of a catalyst, to harmless byproducts. These byproducts are released to the atmosphere through the Formaldehyde Incinerator Stack (5501).
Notes: Shut down in 2024. Documentation is incomplete.
NEW From Cancelled Project!
Design Capacity:
- Sodium Metabisulfite Food Grade 15,000 MT/year
- Magnesium sulfate heptahydrate (MgSO4•7H2O) ≥95% purity ~1800 MT/year by product
Production Process Description
Process Characteristics
Using “excess air + solid sulfur” incineration process, the obtained sulfur dioxide gas concentration is about 12%~15%. Control the reasonable sulfur incineration temperature to ensure complete combustion of sulfur.
Using our proprietary technology for solid sulfur feed system, so that the sulfur incinerator temperature is stable, the sublimation sulfur is less in the flue gas. The plant is designed with negative pressure air blowing system, which has good operating environment, and sulfur yield is high.
Using automatic continuous discharging centrifuge, which is a continuous automatic operation, is safe and reliable, saving manpower.
The low concentration sulfuric acid waste liquid is used for production of Magnesium Sulfate products, so the plant has no waste liquid effluent discharge.
Perfect design of exhaust gas treatment. In the waste gas, SO2 concentration is less than 50mg/Nm3(SO2≤50mg/Nm3).
Process Description
Air Compression and purification section
The air is filtration by air filter, and then is feed into air compressor, the air is compressed by air compressor and is feed into sulfur incinerator, the air burning with solid sulfur and obtain sulfur dioxide gas (SO2).
Sulfur incineration section
The solid sulfur is fed into sulfur incinerator by solid sulfur feeder, the solid sulfur is mixed with air and burning in the sulfur incinerator, and obtain sulfur dioxide gas (SO2), and release a lot of heat at the same time.
S + O2 = SO2 + Q
A part of sulfur dioxide reaction with oxygen and get sulfur trioxide.
2SO2 + O2 = 2SO3 -Q
Sulfur dioxide gas purification section
After burning, the hot flue gas is enter the flue gas buffer tank, and then is enter the cooling pipe, using circulating water to cooling the flue gas, the flue gas is cooling to 50~60℃ and then is feed into flue gas scrubber, through bubble washing to remove SO3 of flue gas. After the flue gas scrubber, using stage of separator to separation and removal of entrained droplets of flue gas. The scrubbing obtained dilute sulfuric acid is collected and used to produce Magnesium Sulfate by-product. The purified sulfur dioxide gas is sent (through pipeline) to sodium Metabisulfite synthesis section.
SO3 + H2O = H2SO4
Soda ash solution batching and sodium Metabisulfite synthesis section
Put solid soda ash (Na2CO3) into the soda ash batching kettle of sodium Metabisulfite synthesis section, add water and mother liquor (the filter liquor) of sodium Metabisulfite centrifuge and mixed into suspension, and then pumping the suspension into sodium Metabisulfite synthesis reactors, and feeds clean sulfur dioxide gas successively into the first stage, second stage and third stage synthesis reactors, after synthesis reaction, get sodium Metabisulfite suspension in the first stage synthesis reactor. The reaction tail gas is discharged from the third stage synthesis reactor, and is lead into the scrubbing tower for treatment.
Na2CO3 + 2SO2 = Na2S2O5 + CO2
Centrifuge & drying process
The Sodium Metabisulfite suspension is discharged from the first stage synthesis reactor and stored into slurry tank, and then from the slurry tank feed into centrifugal, through centrifugal separation and get wet solid Sodium Metabisulfite, which is content 3~5% water, feed the wet Sodium Metabisulfite into hot air dryer (airflow drier), and through cyclone separators, get Sodium Metabisulfite products. The filtrate is collected into the acid mother liquor tank, reused for soda ash solution batching kettle. The drying use hot air comes from the waste heat recovery jacket of sulfur incinerator. After drying, the tail gas is send into tail gas absorption column.
Tail gas treatment section
The tail gas countercurrent contact with soda ash solution, the sulfur dioxide gas in the tail gas was absorbed by soda ash solution, the tail gas was cleaned and emptying **(SO2≤50mg/Nm3)**. The absorption solution reused for soda ash solution batching.
Liquid waste treatment section
In the flue gas scrubber of sulfite dioxide purification section, the sulfite trioxide is absorbed by water and get concentration of 50~60% dilute sulfuric acid liquid waste, which is used to produce Magnesium sulfate heptahydrate by-products.
MgO + H2SO4 + 6H2O = MgSO4·7H2O
Solid Separations:
Saccharified mash is then sent to the sugar clarification system. Paddle screens and centrifuges are used to filter out spent grain solids and wash sugar from the spent grains in a 3-stage counter current wash. Liquid sugar is pumped to 121,000-gallon SS storage tanks and solids are sent to rotary drum dyer for final drying.
Fermentation begins with bacterial propagation through a sanitary seed train consisting of two 44 gallon seed tanks, two 2000 gallon seed tanks and finally a 28,500 gallon seed tank before being mixed with liquid sugar in four 285,000 gallon fermenters. During fermentation broth is continuously stripped from the fermenters and passed through an Alfa Laval ultra filtration skid separating the biologics from the fermentation broth which are sent back to fermenter. Filtrate is pumped to the distillation unit where Butanol and Acetone are distilled off through a series of distillation columns and passed through a 3-effect evaporation system before heading to final product storage
Other notable features include an on-site wastewater treatment facility rated for 157,000 gallons per day and full product testing and microbiological laboratory.
Other potential uses included: high protein feed products, renewable biochemicals, single cell proteins, sustainable aviation fuel, food grade organic acids and industrial/GNS alcohols.
190 Acre API Manufacturing Plant Complex Grimsby, England, UK
This world-class, fully integrated API manufacturing site, formerly operated by Novartis, includes over 1,200m3 of total reactor vessel capacity across three distinct production buildings, available for sale or lease as a whole site or individual buildings for operation in-place. The facility could be utilized for pharmaceutical and animal health API manufacturing or repurposed for specialty/fine chemical manufacturing, flavors and fragrances, or agrochemicals.
VIDEO: https://www.youtube.com/watch?v=AUWUHnAyWos&list=PLRlhdb05DXKR4eyHsLOkB6NzTyh2R4YCE
The site is located adjacent to the river Humber and between the Immingham and Grimsby port facilities, less than 5 minutes from downtown Grimsby, 25 minutes from Humberside Airport, 2.5 hours from Manchester Airport, 3.5 hours from London Heathrow.
Inside the fenceline is approximately 100 acres, with significant development land and infrastructure available inside the fence. There is an additional approximately 90 acres of agricultural land outside the fenceline.
Facility has the capabilities to perform various chemical synthesis, including hydrogenation, Grignard/Friedel-Crafts Reactions, Azide, and Tin Chemistries.
Building 110: Multi-product, Multi-purpose facility (ca. 1993)
- Total Reactor Capacity: 140m3
- Hydrogenation, Crystallization, Centrifugation, Nutsche Filters, Short-Path Distillation, Milling/Blending, Solvent Recovery
- Overhead manifolds and flex piping for production flexibility
- Glass Lined, Hastelloy, and Stainless Steel Equipment
Building 120: Mixed High Volume, Multi-Purpose Facility (ca. 1994/2007)
- Total Reactor Capacity: ~450m3
- 3 dedicated, 3 multi-purpose lines -Hydrogenation, Crystallization, Sublimation, Nutsche Filters, Paddle Dryers, Milling/Blending, Solvent Recovery
- Glass Lined, Hastelloy, and Stainless Steel Equipment
Building 150: High Volume, Multi-Product Facility (ca. 2004/2007)
- 4 Dedicated Process Trains
- Total Reactor Capacity: ~550m3
- Hydrogenation, Crystallization, Centrifugation, Drying, Milling/Blending, Solvent Recovery
- Glass Lined, Hastelloy, and Stainless Steel Equipment
Each building has its own dedicated solvent storage and recovery, in-process lab spaces, workshops, and offices.
Site Utilities:
- 2400m3/day Wastewater (Effluent) Treatment Facility
- 2x4.2MVA grid electricity
- 8000m3/h compressed air
- 3000m3/h nitrogen (by pipeline)
- 4x8MW cooling water capacity
- Towns Water potable supply & 400m3/day borehole (well) water for process cooling
- Previously, there was a CHP plant which has been removed and steam boilers will need to be added to support operations.
The production buildings are supported by the following non-production infrastructure:
- Security Facility
- Administrative Office Building
- 4600m2 (50,000ft2) Engineering Workshop and Offices to support major projects, MRO stores, fabrication, equipment and instrument maintenance, etc.
- 3700m2 (40,000ft2) Lab/R&D Space with sample retain storage facility
- Restaurant/Canteen Building
- Medical Facility/Employee Welfare
- Sports Club and Fields
- Capital Good Stores
- Changeover Warehouses
Warehousing:
- Raw Materials & Intermediate Storage: 3000 pallets
- Solvent (flammable & hazardous) Warehouse: 1930 pallets
- Packaging Storage: 500 pallets
- Finished Goods Storage: 750 pallets
- Cold Storage (-8 deg. C): 320 pallets
- Classified area for sampling / repacking of raw materials: 40 pallets
- Waste Storage: 1200 pallets
The facility was not used in production of of plant/animal extracts, fermentation, penicilin, beta-lactams, steroids, hormonals, or cytoxic compounds.
1,170 barrel-per-day Fischer-Tropes GTL Facility targeting the production of higher-value wax products.
The facility consists of the following sections:
- Steam-Methane Reformer: 46.5 MMSCFD Linde-designed Steam-Methane Reformer (SMR) facility including feed preparation, reformer, syngas cooling, steam generation, hydrogen separation, carbon dioxide removal section (amine section), and carbon dioxide compression for recycle. The facility has only 10 years of operation as a HyCO Plant (hydrogen and carbon monoxide production). The SMR was redesigned and upgraded by Linde in 2015 to supply the new GTL facility
- Fischer-Tropes Reaction Section: Two Fischer-Tropes reactors, each with78,000 sq ft shell and tube exchangers with FT catalyst packed inside the tubes. The reactors are 11’ diameter with 32’ long tubes which are rated for 500 psig at 500°F. All of the steam-generation equipment is included for capturing the FT reaction exotherm. All of the equipment was constructed in 2015 and most of the downstream process-contact material of construction is 304L stainless steel.
- Product Fractionation Section: The Fractionation Column is 3’ diameter by 90’ tall and is constructed of 304 stainless steel. It is rated for 50 psig/full vacuum at 650°F. It has four packed sections with four product “take-offs” (overheads, two side-draws, and bottoms). All associated equipment is included such as the feed heater, condenser, two accumulators, and four overheads product/reflux pumps included. This system was manufactured in 2015 and is almost entirely 304 stainless steel construction.
- Wax Upgrade Section: Two 4,000 gallon batch hydrogenation reactor systems; each with 100 gpm feed capabilities. The reactors are rated for 327 psig at 455°F. Two 218 sq ft Short-Path Distillation Units (SPDU) rated for 22 psig/FV @ 572°F. One 82 sq ft Wiped-Film Evaporator (WFE) rated for 22 psig/FV @ 572°F. All of these systems were manufactured in 2015 in modular construction units and are ready to ship. Virtually all of the process contact material of construction is 304 stainless steel or better. The facility was designed and delivered in modules, but was never constructed or operated.
More Details
- The Fischer-Tropes Reaction Section, the Product Fractionation Section, and the Wax Upgrade Section were all manufactured in 2015 and have never been operated. All of the equipment downstream of the FT Reactors is constructed of 304L stainless steel or better alloys.
- The process is being kept under a nitrogen blanket. All electric motors are being “bumped” weekly or they have been removed and are in climate- controlled storage.
- The DCS is by Yokagawa and it is completely programmed and ready to install. The hardware is still at Yokagawa.
- There is no asbestos in this facility.
- Many spare parts are available.
- This system is located on a major deep-water port with international shipping routes.
This higher-alloy and graphite constructed hydrochloric acid (HCl) recovery system was designed by Sabic. It can handle up to 24 m3/hr of liquid feed and separate out the organics, water, and HCl in aqueous form. The system includes a main distillation column for HCl removal, four HCl absorbers, an HCl regeneration column, and an HCl water removal column.
The previous service was for the recovery of 3% HCl in a wet phenol stream.
Subsystem from a Complete Bisphenol-A (BPA) Plant Stock #600363
1.2 Propanediol (Propylene Glycol) Continuous Hydrogenation System
Process Steps: -Continuous Hydrogenation -Evaporation -Distillation
Major Equipment: -500 mm dia. x 20 M SS Packed Column -(8) Glass Reactors: 1,200 Liter to 12,500 Liter -(6) SS Reactors: 7,200 Liter to 24,000 Liter -(2) Basket Centrifuges
In melamine synthesis, urea is converted to melamine at approx. 400 °c and approx. 2 bar at a Si02 I Al203 catalyst in a synthesis line. As a by-product, ammonia and carbon dioxide are produced in stoichiometric quantities in the process gas.
Hydrogen cyanide as well as multinuclear condensation products of melamine and (partially) hydrolyzed melamine derivatives are also produced in small quantities as secondary components. After separating the melamine from the process gas, it is fed via catalytic decomposers to minimize the minor components. The process gas is then fed to the process gas separation plant in U 024. In addition, a partial flow in the process gas processing can be processed into ammonium nitrate solution and delivered to external factories such as the field fertilizer factory or the nitric acid factory. These plants are not part of the melamine factory, but the exhaust gas flow is generated and must be supplied.
Liquid ammonia (approx. 11 bar) from the gas separation plant is supplied to the external urea factory, fed into the plant network or fed back into the melamine synthesis. The C02-containing residual gases from the process gas processing plant U 028 and the process gas separation plant U 024 are emitted via the outlets
This is the largest unit in a highly integrated facility that sits on 57 acres of land, two-thirds of which are undeveloped. The facility produces Methyl Amines for use in Higher Amines and Amine Derivatives.
The Methyl Amines plant has a capacity of 46,000 metric tons per year mixed amines production.
The following products are produced from the reaction of methanol and ammonia:
Monomethylamine (MMA)
Dimethylamine (DMA)
Trimethylamine (TMA)
1.5 M liters capacity, located just outside of a river, the site is on 10 leased acres within a production facility
Major Equipment:
- 10-150,000 liter 304 SS fermenters with 400 HP agit. & 3,000 scfm air input
- 1- 150,000 liter 304 SS batch sterilization tank with 400 HP agitator
- 3- 7,000 liter seed tanks
- 2- Komline Sanderson Rotary Vac. Filters 10 ft diameter and 12 ft long
- 1- Komline Sanderson 125 cu ft agitated & jacketed paddle dryer
- 1- Wyssmont S40 Turbo Tray Dryer
- 28,000 cfm of process air capacity
- 3,500 ton of chiller capacity
- Cooling towers
Site Services:
- Steam, process water, emergency services, and waste water treatment
1,240 liter, 304SS, batch Hydrogenation reactor system.
Complete system, includes:
1,240 liter High Pressure Jacketed Reactor
4 m3/h High Pressure Magnetic Pump
0.25-45 m3/h Liquids Injection Pump
6.5 m2 Horizontal Heat Exchanger
1.3 m2 Fundabac Filter
2.5 m2 Horizontal Heat Excahnger
250 liter Vertical CS Compressed Air Tank
0.3 m3/h Washing Water, Exhaust Air Scrubber
Siemens S7 Controls
Instruments
This dual-distillation column system was designed to separate and purify up to 16 mt/hr of phenol from a complex mixture of hydrocarbons and water. The system consists of two distillation columns with reboilers, recirculation pumps, and multiple overhead condensers with vacuum jets. The previous service was for the recovery phenol from a stream which was 63% phenol in water, Bisphenol-A, isomers, and tars.
Subsytem from the Complete Bisphenol-A (BPA) Plant, stock #600363
Finished sorbitan ester manufacturing capacity is approximately 9,500 metric tons/year. This ester plant was constructed in the 1980's and shut down in 2009.
There are no technology licensing issues.
Esterification process control systems and programming are completely up-to-date and are for sale with the facility. They are Siemens PCS7 and Fisher-Provox systems.
Some spare parts for critical equipment are available with the sale.
Documentation is available and is primarily electronic.
Click Here to View a Brief Overview on the Sorbitan Plant
Capacity: 550 short tons per day
Pressure: Single Medium Pressure 65-70 psig
% of Nitric: 61%
Spare Parts: spare 8000hp motor / Spare compressor rotating assembly /Blade carrier and various compressor spare parts on site.
The paraformaldehyde plant is a continuous process plant with a total capacity of 30,000 tons per year. Paraformaldeyhde product is 92% concentration and is a dry product. The plant also produces a distillate.
The hexamine (hexamethylenetetramine) plant was built in 1994 with a capacity of 5,000 tons per year. Hexamine production used a by-product from paraformaldehyde . Hexamine production is a continuous process that uses formaldehyde distillate and ammonia as raw materials
Facility consists of (3) units remaining available:
Methyl Amines (MA, DMA, TMA) Plant, 46,000 MTA
Higher Amines Plant, 24,000 MTA
Dimethyl Formamide (DMF) Plant, 24,000 MTA
Highly integrated facility producing Methyl Amines for use in Higher Amines and Amine Derivatives.
This unit is part of an integrated facility that sits on 57 acres of land, two-thirds of which are undeveloped. The facility produces Methyl Amines for use in Higher Amines and Amine Derivatives.
The higher Amines Plant has a capacity of 24,000 metric tons per year
-
The Brine Stripping Distillation Process System is designed to remove light organics from a brine stream using a live-steam fed stripping column. This equipment was previously used in the Procter and Gamble Tertiary Amines Plant in the United States for removing di-methyl amine in a brine stream from a level of about 5% down to a level of less than 18 ppm. -
Alternative uses for the Brine Stripping Distillation Process include the separation or removal of light organics from any heavy organic or brine stream. -
The Honeywell 3000 process control system and program are available with this process, as is all necessary documentation (equipment files, P&IDs, PFDs, operating manuals, etc.). All pressure vessels have National Board numbers, and spare parts are available for most equipment. The plant has been properly cleaned of all chemicals. This site is very accessible by road and rail. Equipment can be barged from the local docks only a few miles away on a major river.(part of 145MM lbs/year Tertiary Amines Plant, stock #600448)
Process Technology Overview
The aniline at the site is produced via adiabatic gas-phase technology and mononitrobenzene (MNB) adiabatic reaction technology. The key raw material reacted in these processes are benzene and nitric acid.
Gas-Phase Aniline Process
At the site, aniline is produced by a proprietary fluid catalytic cracking (FCC) adiabatic gas-phase, using a fixed-bed catalytic hydrogenation process from MNB and hydrogen. The process technology is licensed in. Nitric acid is produced at the site and combined with benzene to produce mononitrobenzene via an adiabatic reaction process. A purification train is then used to neutralize and purify the product. Methane is supplied via pipeline and used to produce hydrogen from two steam/methane reforming reactors. Then aniline is produced by a proprietary adiabatic gas-phase, fixed-bed catalytic hydrogenation of MNB with hydrogen and a purification train. The wastewater is treated and discharged to the municipal outfall, with some organic waste streams being treated in the onsite thermal oxidizer unit (liquid waste incinerator).
This all stainless steel, dual-evaporator system was designed to separate and purify up to 8 mt/hr of Bisphenol-A (BPA) from a complex mixture including isomers, acetone, and water. The system consists of a flash evaporator with reboiler, a Luwa evaporator, a recovery column, and multiple overhead condensers.
Subsystem from Complete Bisphenol-A (BPA) Plant Stock #600363
Previously used in the filling and packaging of liquid detergents of a variety of size bottles.
During operation, there were 6 complete filling lines and 4 complete palletizers working.
The six lines are named as below:
- Line 1: Bosch,
- Line 2: Corniani,
- Line 3: Serac,
- Line 4: Ronchi,
- Line 5: Flexible,
- Line 6: Nelsen.
The site also has significant blending and storage capacity which is available separately from IPP.
This unit is part of an integrated facility that sits on 57 acres of land, two-thirds of which are undeveloped.
The facility produces Methyl Amines for use in Higher Amines and Amine Derivatives.
The purpose of the DMF plant is to react dimethylamine (DMA) from the methyl amines plant, with carbon monoxide from the Oil Gas Plant and with sodium methoxide catalyst to produce dimethylformamide (DMF) for external sale.
The current capacity of the plant is approx. 24,000 tpa
Annual capacity of the plant is 274,500,000 pounds of fatty acids and 26,000,000 pounds of glycerin.
Plant was shut down September 2018 and is winterized.

